Сентябрь 2025
Ксения Иванчикова
Редактор Generation AI

Тренды ИИ в ритейле 2025: нарратив рынка и кейсы применения

Как искусственный интеллект в ритейле меняет рынок: прогнозы, практические примеры, возможности использования нейросетей в ритейле для персонализации и повышения продаж.

Переход от экспериментам к best practices

В 2025 году персонализированные рекомендации, диалоговые ассистенты, виртуальные примерочные и «умные» цепочки поставок перестали быть экспериментами и стали нормой для ритейла.

Salesforce отмечает, что 39% покупателей — и более половины поколения Z — применяют AI-сервисы при поиске товаров. ИИ в торговле формирует новую реальность, где конкурировать можно только за счет скорости, глубины персонализации и доверия к алгоритмам.

Глобальные тренды AI: как используют нейросети в ритейле

ИИ в ритейле тренды пронизывают всю цепочку создания ценности: от планирования запасов до коммуникации с покупателем. Вот несколько направлений, которые задают тон индустрии:

1. Гиперперсонализация

Алгоритмы уходят от сегментации и формируют one-to-one опыт на основе истории покупок и поведения в реальном времени. Это уже база: 92% маркетологов в ритейле применяют AI для персонализации, а 55% планируют увеличить бюджеты в ближайший год.

2. Голосовые ассистенты и AI-агенты

Чат-боты и голосовые ассистенты становятся полноценным каналом продаж. Это ключевой тренд для ИИ в e-commerce. Развитие голосового AI и чат-ботов ускоряет закрытие сделок и снижает нагрузку на колл-центры.

3. «Умные» цепочки поставок

AI прогнозирует спрос, оптимизирует запасы и выявляет сбои в логистике. 60% ритейлеров в мире внедряют AI-системы для управления цепочками поставок, что позволяет сокращать издержки и минимизировать дефициты/излишки.

4. Виртуальные примерочные

Компьютерное зрение, AR и GenAI повышают доверие к онлайн-шопингу: виртуальные примерочные снижают количество возвратов, а визуальный поиск становится одним из ключевых каналов вовлечения. По данным Quid, каждый пятый онлайн-покупатель в 2025 году использует AR/AI-функции для выбора товаров.

5. Этика и доверие

Тема прозрачности алгоритмов становится критически важной: по исследованию Pew Research, 71% пользователей против того, чтобы финальное решение о найме или отборе принимал AI, и схожее недоверие распространяется на ритейл-алгоритмы. Покупатели ожидают, что компании будут честно объяснять, как используются их данные и почему формируются те или иные рекомендации.

6. Интеграция и омниканальность

AI встраивается во все процессы — от маркетинга и клиентского сервиса до логистики. По прогнозам DemandSage, 95% взаимодействий с клиентами к концу 2025 года будут так или иначе поддерживаться AI.

Таким образом, ИИ в ритейле тренды становятся ключевым вектором развития на ближайшие годы.

Российские и международные бизнес-примеры: ИИ в ритейле кейсы

Publicis Sapient — персонализация ритейла

Publicis Sapient — консалтинговая компания, специализируется на цифровой трансформации для ритейла, финансов и сервисных бизнесов.
  • Проблема
    Ритейлерам сложнее конкурировать с Amazon, особенно в поиске, персонализации и монетизации данных. Основной барьер — разрозненные данные: CRM, каталоги, цены, история покупок. Без их объединения и очистки персонализация работает плохо, а новые гипотезы проверяются медленно.
  • Применение GenAI
    Publicis Sapient помогает ритейлерам встроить генеративный AI: технология делает персонализированные рекомендации и создает контент — от писем до описаний товаров, управляет динамическим ценообразованием и подсказывает клиентам через чат-боты и поисковых ассистентов.
  • Стек технологий
    • LLM-модели (ChatGPT, Gemini)
    • Интеграция с CRM, каталогами и ценовыми данными
    • Retail media и CMS
    • IoT: электронные ценники (ESL), «умные тележки»
    • Методология «микроэкспериментов» для ускоренного внедрения
  • Бизнес-эффект
    Конверсия растет: 56% покупателей возвращаются при получении релевантных рекомендаций, выручка увеличивается за счет персонализации и retail media. Это реальный пример того, как работают кейсы ИИ в ритейле.

eBay ShopBot — автоматизация маркетплейса

eBay — один из крупнейших мировых онлайн-маркетплейсов.
  • Проблема
    Создание и поддержка миллионов товарных листингов — огромный объем работы. Продавцы тратили часы на написание заголовков и описаний, а покупатели сталкивались с неконсистентными данными и сложностями при поиске.
  • Применение GenAI
    eBay внедрил ShopBot — она создает названия и описания товаров, классифицирует их по категориям и переводит ввод продавца в структурированный формат. Контент становится консистентным, SEO-оптимизированным и подходит для внутреннего поиска. GenAI встроен прямо в рабочие пайплайны eBay.
  • Стек технологий
    • LLM-модели (GPT, BART) для генерации описаний, заголовков и категорий
    • Модели классификации и семантического поиска
    • AutoML/MLOps для масштабирования и постоянного улучшения моделей
    • Интеграция с API eBay и внутренними пайплайнами
  • Бизнес-эффект
    Продажи выросли за счет более качественных заголовков и описаний, которые увеличили CTR и конверсии; листинги масштабируются быстрее без ручной подготовки, снизились затраты на контент и модерацию.

Stitch Fix — стилист в интернет-магазине

Stitch Fix — американский онлайн-ритейлер одежды, который совмещает алгоритмы и работу персональных стилистов. Более 3,5 млн клиентов в США и Великобритании.
  • Проблема
    Подбор одежды онлайн всегда связан с риском: клиент не уверен, подойдет ли вещь, а стилисты не успевают обрабатывать весь объем запросов.
  • Применение GenAI
    Генеративный AI в Stitch Fix анализирует анкеты, покупки и отзывы клиентов, генерирует индивидуальные подборки одежды и помогает стилистам формировать комплекты быстрее.
  • Стек технологий
    • LLM + ML-модели, обученные на исторических данных (вкусы, фидбек, стили)
    • Recommendation engine на основе гибрида контентной и поведенческой фильтрации
    • Data pipeline: сбор клиентских анкет, покупок и отзывов
  • Бизнес-эффект
    Клиенты получают точные рекомендации, растет удовлетворенность и повторные заказы, снижаются возвраты, а подборки AI-стилиста чаще конвертируются в покупки.

The North Face — помощник для покупок

The North Face — международный бренд одежды и снаряжения для активного отдыха и спорта, входящий в VF Corporation.
  • Проблема
    В интернет-магазине покупателям сложно подобрать подходящую экипировку: нужно учесть вид активности, место, климат и температуру. Поиск вручную отнимает время и снижает конверсию.
  • Применение GenAI
    Компания внедрила AI-ассистента, который задает покупателям уточняющие вопросы — для какой активности нужна одежда, в какой местности, при какой температуре — и на основе ответов формирует персонализированный набор товаров.
  • Стек технологий
    • LLM-модели для диалога и уточняющих вопросов
    • Recommendation engine для подбора релевантных товаров
    • Интеграция с e-commerce-каталогом и CRM
  • Бизнес-эффект
    Конверсия растет за счет сокращения времени до покупки и увеличения среднего чека, а AI в роли консультанта улучшает клиентский опыт и усиливает доверие к бренду.

Shopify Magic — встроенный AI для продавцов

Shopify — международная платформа для интернет-магазинов для малого и среднего бизнеса.
  • Проблема
    Продавцам не хватало ресурсов на создание описаний товаров, email-рассылок и визуалов.
  • Применение GenAI
    Shopify внедрил Magic — встроенный инструмент, который в админке генерирует тексты для карточек товаров, письма и FAQ, а также редактирует изображения: меняет фон и создает новые визуалы под запрос. AI стал частью повседневной работы продавца, упрощая и ускоряя рутинные задачи.
  • Стек технологий
    • OpenAI API
    • Генерация текстов (описания, письма, FAQ)
    • Генерация и редактирование изображений
  • Бизнес-эффект
    Запуск товаров ускорился на 80%, сократились расходы на копирайтеров и дизайнеров, конверсия выросла за счет более карточек, а решение оказалось масштабируемым — одинаково эффективно для одного и для 10 000 SKU.

Walmart — «умная» цепочка поставок

Walmart — крупнейший ритейлер мира с десятками тысяч магазинов и мощной логистикой.
  • Проблема
    Компания сталкивалась с перебоями: задержки поставок, избыточные запасы и риски дефицита.
  • Применение GenAI
    Walmart внедрил AI для прогнозирования сбоев и автоматизации ключевых процессов. Модели симулируют кризисные сценарии (например, погодные катастрофы), генерируют инструкции для персонала и создают тренинги. В цепочке поставок AI управляет self-healing inventory — системой, которая автоматически предотвращает дефициты и излишки.
  • Стек технологий
    • Simulink и системы моделирования
    • Generative AI для документации и инструкций
    • Автоматизированные тренинги
    • Self-healing inventory
  • Бизнес-эффект
    Снизились издержки благодаря точному прогнозированию, ускорилась реакция на сбои в поставках, удалось предотвратить дефицит и избыточные запасы, что повысило устойчивость всей цепочки поставок.

Ozon × CopyMonkey — массовая генерация карточек

Ozon — один из крупнейших маркетплейсов России. CopyMonkey — SaaS-сервис для генерации описаний товаров.
  • Проблема
    Продавцам нужно быстро создавать карточки товаров и повышать конверсию, не увеличивая расходы на копирайтеров.
  • Применение GenAI
    CopyMonkey генерирует описания под SEO Ozon, предлагает ключевые слова и создаёт несколько A/B-вариантов. Интеграция с API маркетплейса позволяет массово запускать карточки за часы.
  • Стек технологий
    • GPT-модели
    • Интеграция с Ozon API
    • A/B-тестирование описания
  • Бизнес-эффект
    Конверсия выросла на 17%, запуск новых SKU теперь занимает часы вместо недель.
Эти ИИ в ритейле кейсы показывают, что технологии дают прямой финансовый результат.

ИИ в смежных направлениях: ИИ в торговле и ИИ в e-commerce

AI выходит за пределы классического ритейла и становится частью торговых экосистем. ИИ в торговле помогает прогнозировать спрос и оптимизировать закупки, а ИИ в e-commerce ускоряет запуск SKU и делает клиентский опыт максимально персонализированным.

ИИ в ритейле 2025 — драйвер ROI

В кейсах мы видим рост конверсии до +17%, ускорение запуска SKU на 80%, возврат до 56% клиентов при персонализированных рекомендациях. Это выражается в увеличении выручки, сокращении затрат на контент и логистику и повышении маржинальности. ИИ в ритейле тренды и реальные проекты показывают: AI становится не экспериментом, а ключевым фактором конкурентного преимущества.

Другие материалы